transfer.sh/vendor/golang.org/x/crypto/xts/xts.go
Remco cb6e5cb0c7 Major rewrite
* use dep for vendoring
* lets encrypt
* moved web to transfer.sh-web repo
* single command install
* added first tests
2017-03-22 18:09:21 +01:00

138 lines
4.4 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package xts implements the XTS cipher mode as specified in IEEE P1619/D16.
//
// XTS mode is typically used for disk encryption, which presents a number of
// novel problems that make more common modes inapplicable. The disk is
// conceptually an array of sectors and we must be able to encrypt and decrypt
// a sector in isolation. However, an attacker must not be able to transpose
// two sectors of plaintext by transposing their ciphertext.
//
// XTS wraps a block cipher with Rogaway's XEX mode in order to build a
// tweakable block cipher. This allows each sector to have a unique tweak and
// effectively create a unique key for each sector.
//
// XTS does not provide any authentication. An attacker can manipulate the
// ciphertext and randomise a block (16 bytes) of the plaintext.
//
// (Note: this package does not implement ciphertext-stealing so sectors must
// be a multiple of 16 bytes.)
package xts // import "golang.org/x/crypto/xts"
import (
"crypto/cipher"
"errors"
)
// Cipher contains an expanded key structure. It doesn't contain mutable state
// and therefore can be used concurrently.
type Cipher struct {
k1, k2 cipher.Block
}
// blockSize is the block size that the underlying cipher must have. XTS is
// only defined for 16-byte ciphers.
const blockSize = 16
// NewCipher creates a Cipher given a function for creating the underlying
// block cipher (which must have a block size of 16 bytes). The key must be
// twice the length of the underlying cipher's key.
func NewCipher(cipherFunc func([]byte) (cipher.Block, error), key []byte) (c *Cipher, err error) {
c = new(Cipher)
if c.k1, err = cipherFunc(key[:len(key)/2]); err != nil {
return
}
c.k2, err = cipherFunc(key[len(key)/2:])
if c.k1.BlockSize() != blockSize {
err = errors.New("xts: cipher does not have a block size of 16")
}
return
}
// Encrypt encrypts a sector of plaintext and puts the result into ciphertext.
// Plaintext and ciphertext may be the same slice but should not overlap.
// Sectors must be a multiple of 16 bytes and less than 2²⁴ bytes.
func (c *Cipher) Encrypt(ciphertext, plaintext []byte, sectorNum uint64) {
if len(ciphertext) < len(plaintext) {
panic("xts: ciphertext is smaller than plaintext")
}
if len(plaintext)%blockSize != 0 {
panic("xts: plaintext is not a multiple of the block size")
}
var tweak [blockSize]byte
for i := 0; i < 8; i++ {
tweak[i] = byte(sectorNum)
sectorNum >>= 8
}
c.k2.Encrypt(tweak[:], tweak[:])
for i := 0; i < len(plaintext); i += blockSize {
for j := 0; j < blockSize; j++ {
ciphertext[i+j] = plaintext[i+j] ^ tweak[j]
}
c.k1.Encrypt(ciphertext[i:], ciphertext[i:])
for j := 0; j < blockSize; j++ {
ciphertext[i+j] ^= tweak[j]
}
mul2(&tweak)
}
}
// Decrypt decrypts a sector of ciphertext and puts the result into plaintext.
// Plaintext and ciphertext may be the same slice but should not overlap.
// Sectors must be a multiple of 16 bytes and less than 2²⁴ bytes.
func (c *Cipher) Decrypt(plaintext, ciphertext []byte, sectorNum uint64) {
if len(plaintext) < len(ciphertext) {
panic("xts: plaintext is smaller than ciphertext")
}
if len(ciphertext)%blockSize != 0 {
panic("xts: ciphertext is not a multiple of the block size")
}
var tweak [blockSize]byte
for i := 0; i < 8; i++ {
tweak[i] = byte(sectorNum)
sectorNum >>= 8
}
c.k2.Encrypt(tweak[:], tweak[:])
for i := 0; i < len(plaintext); i += blockSize {
for j := 0; j < blockSize; j++ {
plaintext[i+j] = ciphertext[i+j] ^ tweak[j]
}
c.k1.Decrypt(plaintext[i:], plaintext[i:])
for j := 0; j < blockSize; j++ {
plaintext[i+j] ^= tweak[j]
}
mul2(&tweak)
}
}
// mul2 multiplies tweak by 2 in GF(2¹²⁸) with an irreducible polynomial of
// x¹²⁸ + x⁷ + x² + x + 1.
func mul2(tweak *[blockSize]byte) {
var carryIn byte
for j := range tweak {
carryOut := tweak[j] >> 7
tweak[j] = (tweak[j] << 1) + carryIn
carryIn = carryOut
}
if carryIn != 0 {
// If we have a carry bit then we need to subtract a multiple
// of the irreducible polynomial (x¹²⁸ + x⁷ + x² + x + 1).
// By dropping the carry bit, we're subtracting the x^128 term
// so all that remains is to subtract x⁷ + x² + x + 1.
// Subtraction (and addition) in this representation is just
// XOR.
tweak[0] ^= 1<<7 | 1<<2 | 1<<1 | 1
}
}